National Centre for Nuclear Research

Krzysztof Kurek

Institute	site	staff	supervised	funded
National Centre for Nuclear Research (NCBJ)	Świerk, Łódź, Warsaw	1114	Ministry of Economy	Ministry of Science & Higher Education
Institute of Nuclear Chemistry & Technology (IChTJ)	Warsaw	241	Ministry of Economy	Ministry of Science & Higher Education
Central Laboratory for Radiological Protection (CLOR)	Warsaw	53	Ministry of Economy	Ministry of Science & Higher Education
Institute of Nuclear Physics (IFJ) Polish Academy of Sciences	Cracow	486	Ministry of Science & Higher Education	Ministry of Science & Higher Education

Universities with some nuclear research and education:

AGH Technical University in Cracow, Warsaw University of Technology, University of Warsaw, Technical University in Gdańsk, Silesian University of Technology, Wrocław Technical University, + ...

A bit of history

Institute of Nuclear Research IBJ - was established (initially in the structure of Polish Academy of Science) in June 1955 by the decision of Polish government -60 years ago.

Accelerators

Prof. Andrzej Soltan already in 1938 developed the first in Poland accelerator of hydrogen and deuterium ions to an energy of around 300 keV.

Prof. Andrzej Sołtan nominated in 1955 to the position of the general director of IBJ, continued his research in this area in order to establish the necessary instrumental basis for nuclear physics investigations.

New idea of resonance accelerating structure developed in the 50s by L. Alvarez was implemented by A. Soltan and the IBJ team into a project carried out 1956-1970.

10 MeV Proton Linear Accelerator was named "Andrzej" to honour Prof. Sołtan.

General view of proton linear accelerator "Andrzej"

A bit of history

Institute of Nuclear Research IBJ - was established (initially in the structure of Polish Academy of Science) in June 1955 by the decision of Polish government -60 years ago.

Nuclear Research Reactor EWA

1989 issued by Polish National Bank

NCBJ Today

commercial applications:

(radioisotope

accelerators.

detectors ...)

products,

material

physics

applied

physics

research infra-

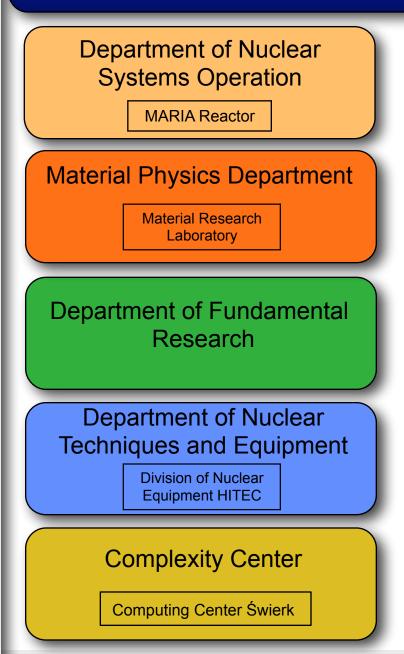
structure

nuclear energy

- Institute joins basic and applied research in the following domains:
 - particle physics, nuclear physics,
 - astrophysics, plasma physics,
 - material physics,
 - reactor and accelerator physics
 - nuclear energy
- medical accelerators, radioisotope products

export to 78 countries, ⁹⁹Mo - 18% of world production

Krzysztof Kurek - National Centre for Nuclear Research, Świerk


fundamental

reactor

physics

research

The largest research institute in Poland 1114 employees, inc. 60 prof. & 122 PhD

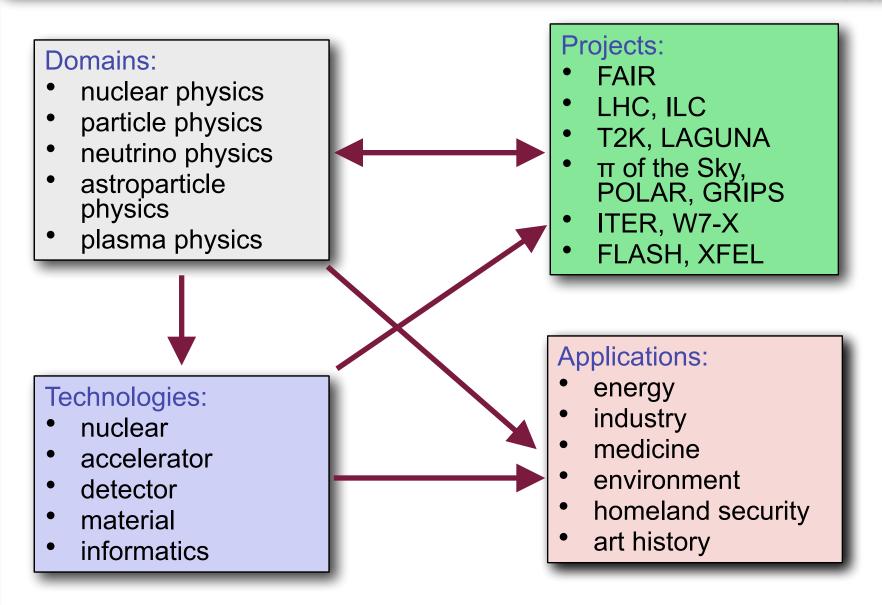
Scientific achievements: ~600 reviewed papers, ~10000 quotations each year Hirsh index = 125, 5th position in Poland SCImago "Normalized Impact": 1st in Poland, 8th in region, 158th in the world

International collaborations with largest laboratories in the world (CERN, DESY, Grenoble, JParc, FAIR, Julich, ESS, JINR, etc), cooperation in many universities around the world

Radioisotope Centre POLATOM-NCBJ

LHC accelerator

Our contribution:


- CMS muon trigger electronics
- LHCb "straw tube" chambers
- Linac4 accelerating structures

Basic and applied research

esearch

8

Name	Const-	Cost	Contribution			
site	ruction	ction Cost Polar		NCBJ		
European-XFEL DESY Hamburg	2010- 2016	1,2 G€	27 M€	6 M€	accelerator components	
Linac4 dla LHC CERN Geneve	2008- 2014		-	1 M€	p-buncher, π-mode structures PIMS	
Stellarator W7-X Greifswald	2011- 2014	0,4 G€	6 M€	4,5 M€	neutral beam injection components	
FAIR Darmstadt	2012- 2017	4,4 G€	24 M€	~1 M€	detector components	
European Spallation Source (ESS) Lund	2008- 2025	1,5 G€	30 M€	16 M€ ?	accelerator components, radiation calculation,	
Jules Horowitz Reactor (JHR) Cadarache	2012- 2019	1,0 G€	10 M€?	5 M€?	hot cell to measure gas composition	
Experiment GBAR CERN Geneve	2012- 2016		_	~1,2 M€	e- accelerator construction	

Accelerators and detectors

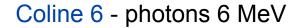


Prototype cavities 1.3 GHz for Tesla-FEL DESY, Hamburg

From research instruments to commercial applications

Target for experimental facility

Isolde, CERN, Genewa


Accelerator for radiotherapy

COLINE

Krzysztof Kurek - National Centre for Nuclear Research, Świerk

cooperation with UJP Hitec Systems S.A.

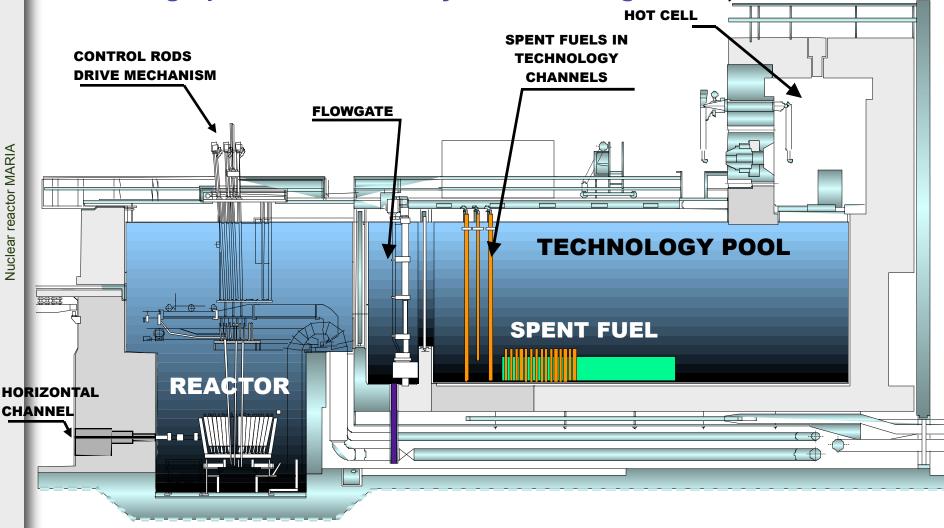
INTRALINE - accelerator for radiotherapy for surgical operations

electrons 4-12 MeV

System RTG for large size scan - CANIS border protection etc.

A&D

Nuclear research reactor MARIA



- built 1974, upgrade 1992
- pool type
- H₂O, Be moderated
- 30 MW thermal power
- neutron flux:
 - thermal 4.10¹⁴ n/cm²s
 - \circ fast 2.10¹⁴ n/cm²s
- neutron beam research, material irradiation, radioisotope production
- ⁹⁹Mo for medical use 18% of world production
- 1 week of Maria irradiation = 100 000 medical procedures

Each channel is individually connected to the primary cooling circuit

Irradiation channels: ø=79mm in fuel channels, 38mm in graphite, 23mm in beryllium, 1m long 1000 Ci, 2.0x1.8x1.3m

Radioisotope products of NCBJ

PRODUCTS FOR NUCLEAR MEDICINE

Radiopharmaceuticals for diagnostic and therapy

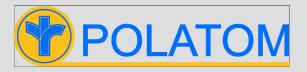
- MIBG ¹³¹I for diagnostic use
- MIBG ¹³¹I for therapeutic use
- MIBG ¹²³I for injection
- Sodium iodide, Na 131 for injection
- Sodium iodide, ^{Na 131}I capsules for diagnostics
- Sodium iodide, ^{Na 131}I capsules for therapy
- Sodium orthophosphate, Na₂H³²PO₄ for injection
- Hipuran ¹³¹I for injection
- Strontium chloride, ⁸⁹SrCl₂

Kits for labelling with 99mTc

- PoltechColloid, 0,17 mg
- PoltechDMSA, 1 mg
- PoltechDTPA, 13,25 mg
- PoltechMBrIDA, 20 mg
- PoltechMDP, 5 mg
- PoltechMIBI, 1 mg
- PoltechRBC, 14,40 mg
- ^{99m}Tc-Tektrotyd

Radiochemicals (pharmaceutical grade)

- Sodium chromate, Na₂⁵¹CrO₄ for injection
- ⁶⁴CuCl₂ as cupric (II) chloride
- ⁵⁹Fe as Iron (III) citrate, FeC₆H₅O₇
- ⁵¹Cr as ⁵¹Cr-EDTA for injection


Precursors for labelling

- LutaPol
- ItraPol

Radionuclide generators

- ⁹⁹Mo/^{99m}Tc generator
- ¹⁸⁸W/¹⁸⁸Re generator

Accessories for Nuclear Medicine Department

PRODUCTS FOR RESEARCH AND DEVELOPMENT

Radiochemicals reagents

Antimony ¹²⁴Sb Arsenic ⁷⁶As Barium ¹³¹Ba Barium ¹³³Ba Bromine ⁸²Br Cadium ¹⁰⁹Cd Cadium ^{115m}CD Caesium ¹³¹Cs Caesium ¹³⁴Cs Caesium ¹³⁷Cs Calcium ⁴⁵Ca Chromium ⁵¹Cr Cobalt ⁵⁸Co Cobalt ⁶⁰Co Copper ⁶⁴Cu Europium ¹⁵²Eu Europium ¹⁵²⁺¹⁵⁴Eu Gold ¹⁹⁸Au Holmium ¹⁶⁶Ho lodine ¹³¹

Indium ^{114m}In Iridium 192 Ir Iron ⁵⁵Fe Iron ⁵⁹Fe Lanthanum ¹⁴⁰La Lutetium ¹⁷⁷Lu Neodymium ¹⁴⁷Nd Phosphorus ³²P Rhenium ¹⁸⁶Re Rubidium ⁸⁶RB Samarium ¹⁵³Sm Scandium ⁴⁶Sc Selenium ⁷⁵Se Silver ^{110m}Ag Sodium ²⁴Na Strontium ⁸⁵Sr Strontium 89Sr Strontium ⁹⁰Sr Sulphur ³⁵S Terbium ¹⁶⁰Tb Thallium ²⁰⁴TI Thulium ¹⁷⁰Tm Tin ¹¹³Sn

-131 hot cells

Y-90 & Lu-177 hot cells

Radiopharmaceuticals with manufacturing authorisation

POLATOM

Quality Assurance System certified:

PN-ISO 9001 :2001 GMP and GLP

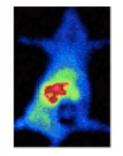
¹⁸⁸W/¹⁸⁸Re generator line

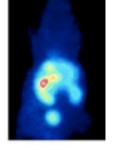
Krzysztof Kurek - National Centre for Nuclear Research, Świerk

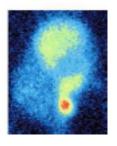
¹³¹I-Hipuran,

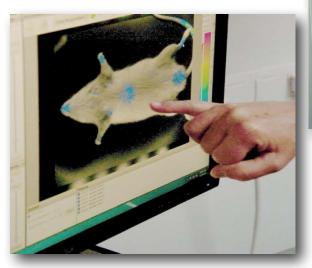
solutions line

¹³¹I-MIBG


injection


Laboratory for preclinical research for radioisotope tests with small animals (opened 2014)




Biodistribution and pharmacokinetcs of radioactive compounds in normal and tumour-bearing mice and rats

Krzysztof Kurek - National Centre for Nuclear Research, Świerk

POLATOM Laboratory of Radioactivity Standards

Research Projects

- Polish project "In vitro and in vivo radiometals influence on the ability imaging by the radiolabelled gastr
- Polish project "Alternative method production"
- ERA-NET project "Phase I clinical gastrin receptor-localizing radiolat personalized diagnosis and therap progressive or metastatic medulla

Itrapol & Lutapol 90Y 177Lu

Brussels-Eureca 2014

First in the World medical registration of ¹⁷⁷Lu

 IAEA Project "Therapeutic radiopharmaceuticals based on 177Lu- and 90Y- labelled monoclonal antibodies and peptides: development and preclinical evaluations"

Computing Centre Świerk

www.cis.gov.pl

Centrum Informatyczne Świerk

- 24 M€, dedicated building
- ~Pflops, 17 PB storage
- Certified for classified data (EU and NATO)
- Computing for research (GRID)
- Support for nuclear power program (Nuclear Energy Division)
- ✓ to perform safety assessment analysis
- ✓ to understand severe accident phenomena
- \checkmark to study measures to mitigate the release of activity
- \checkmark to develop and assess computer models and codes

CiŚ

Computing Centre Świerk

Server type	# of computers	# of cores CPU	Computing power [TF]	RAM [TB]
HP-BL685c	30	1920	17	7.7
SuperMicro TwinBlade	448	8960	200	57.3
Bullx B700	448	8960	300	57.3
Format ODYN 5248T	450	11280	450	60.2
NVidia Tesla K80	20	80	94	
Total	1396	31200	1061	182.5

Server type	Capacity [PB]
HP MDS600 (SAS)	0.6
NetApp FAS62x0 (Ethernet, NFS)	1.6
EMC Isilon HD400 (Ethernet, pNFS)	7.0
Seagate OneStore (Infiniband, Lustre)	8.0
Total	17.2

1

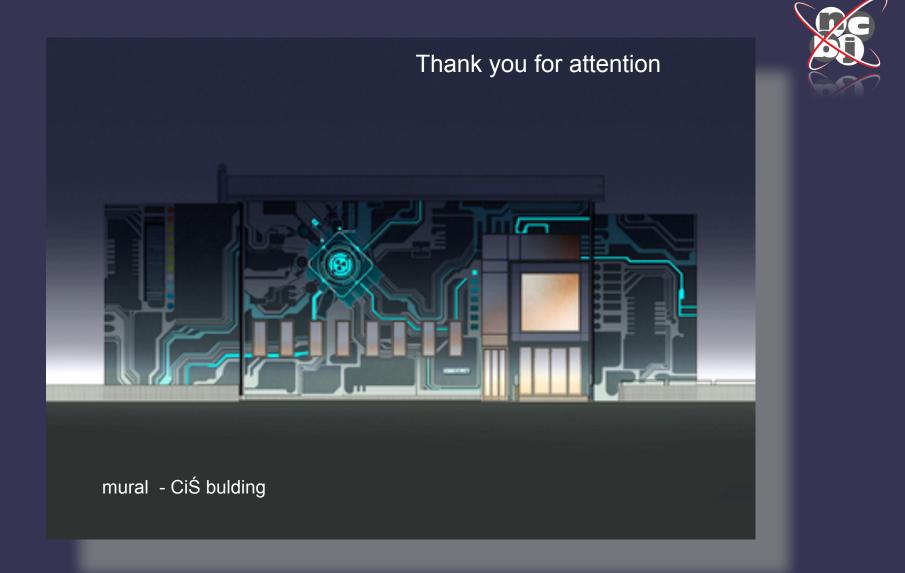
CiŚ

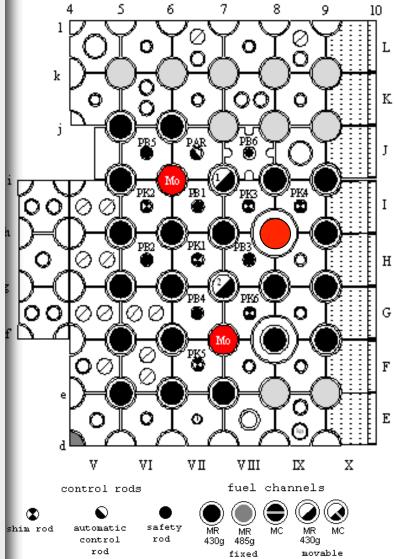
Krzysztof Kurek - National Centre for Nuclear Research, Świerk

Krzysztof Kurek - National Centre for Nuclear Research, Świerk

International Collaboration in nuclear research

- IAFA:
- Participation in trainings, courses and conferences; Ο
- Participation in TSO Forum and Advisory Meetings; Ο
- NEA OECD
- Representation of Poland in different Committees and Working Groups; Ο
- Participation in NUGENIA and SNETP;
- Participation in SARNET project;
- Participation in EURATOM/FP7/H2020 projects:
- ASGARD with IChTJ management and transmutation of the spent fuel; Ο
- NURESAFE creation of a platform of a Best Estimate Codes for nuclear industry; Ο
- ASAMPSA E: Advanced Safety Assessment Methodologies: Extended PSA Ο
- ESNII+ European Sustainable Nuclear Industrial Initiative; Ο
- NC2I-R Nuclear Cogeneration Industrial Initiative coordinated by NCBJ Ο
- ALLIANCE, VINCO (coordinated by NCBJ) part of the ALLEGRO GFR project; Ο
- IPPA Implementation of Public Participation in decision making related Ο to radioactive waste management
- BRILLIANT Baltic Region Initiative on Advanced Nuclear Technologies Ο
- CEA France: ٠
- Training for performing calculations with CEA codes; Ο
- Maria reactor and JHR collaboration: Ο
- GE-Hitachi and Westinghouse bilateral agreements;





National Centre for Nuclear Research

⁹⁹Mo production in MARIA

Current cycle:

- 2×8 plates for 122-145h (weekly cycles)
- EOI: 7500-8000 Ci
- EOP: 780-830 Ci (6-days)

2013 production:

- ~20 weeks
- 18% of world production (1st semester)

Upgrade possibilities:

- ×1.5 12 plates per channel
- ×1.5 using third channel
- ×2-40 weeks / year